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Abstract — A new algorithm for the wide-band analysis of the two-dimen-
sional model of a planar circuit is described. The planar circuit is consid-
ered to be enclosed in a regularly shaped (rectangular or circular) reso-
nator, and the electric and magnetic fields are derived from the Green’s
functions of this resonator by integrating over the periphery of the circuit
not coinciding with the regular shape. The special form used for the
Green’s functions makes it possible to derive the Z parameters in a special
form, similar to Foster’s series, but converging much more rapidly. The
calculation requires the determination of a reduced number of resonances
of the planar circuit, which are obtained by an integral equation approach
leading to a linear eigenvalue problem. The algorithm was implemented in
an efficient CAD routine, named ANAPLAN, which is briefly described.

I. INTRODUCTION

N COMPARISON with usual line elements, strip and

microstrip planar elements allow a greater flexibility in
MIC and MMIC design. The possibility of considering a
virtually infinite variety of shapes may lead to interesting
solutions in the design of many circuit components, such
as directional couplers, filters, and chokes. Since the pub-
lication of the early papers on planar circuits [1]-[4],
interest in this subject has increased continuously. An
extensive bibliography on both methodological and appli-
cative aspects can be found in [5] and in a recent survey
paper by Sorrentino [6].

The design flexibility inherent in planar circuit philoso-
phy can be fully exploited only if CAD tools suitable for
the wide-band analysis and optimization of arbitrary shapes
are available. Fast algorithms for analysis are of paramount
importance, as trial-and-error optimum design techniques
require a significant number of sequential analyses.

A simple model used in the analysis of planar circuits
assumes that the circuit is laterally bounded by a magnetic
wall, except at the ports (Fig. 1(a)). Since in this model the
(z-directed) electric field and the (transversal) magnetic
field are z-independent, the field analysis is two-dimen-
sional and it is much simpler than the three-dimensional
one which would be required for taking into account
fringing field and radiation effects rigorously. The use of
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Fig. 1. (a) Two-dimensional model of a planar circuit. (b) Planar circuit
enclosed inside a rectangular resonator €. In this example Q=S5+ 5,
+8,+ 85 6=0,+0, +0,.

this model is well established in the analysis of strip
(triplate) planar circuits, where the fringing field effects are
taken into account by a slight enlargement of the transver-
sal circuit dimensions [5]. The same model was used for
the analysis of microstrip planar resonators [7], [8] and
circuits [9], [10]. In these last cases the fringing field effect
was taken into account by considering an enlarged circuit
pattern and an effective permittivity. Though the two-
dimensional model is less accurate in microstrip than in
triplate circuit analysis, it is, however, a useful starting
point in the design of such circuits.

Thus far, three kinds of methods have been proposed for
the analysis of planar elements of arbitrary shapes: i) the
time-domain approach [11]; ii) the contour integral method
[4]; and iii) the eigenfunction expansion method [12]. The
time-domain approach has the advantage of permitting the
analysis of circuits including nonlinear elements, but it
leads to computer times that are prohibitive for CAD
applications. The contour integral method is very efficient
for single-frequency calculations, but it may require a very
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long frequency-by-frequency analysis when used in wide-
band design.

In principle the eigenfunction expansion method is well
suited for wide-band analyses, as it supplies directly the
poles and the residues necessary to determine the Y
parameters on the basis of their Foster representation.
This method requires the determination of the resonating
modes of the circuit when the ports are shorted, since each
pair of poles is given by the resonating frequency of a
mode and the pertinent residues depend on the modal
field. Due to the relatively slow convergence of the Foster
series, in order to achieve a good accuracy in a wide band,
the number of modes to be considered must be much
larger than the number of modes occurring in the band of
interest. This is a serious drawback, because the modes
must be determined numerically using, for example, the
finite element technique. For this reason, even though this
method is the most suitable for wide-band analyses, its
practical use requires a very long computer time.

In this paper we present a new algorithm, well suited for
wide-band analyses of planar circuits of arbitrary shapes,
represented by their two-dimensional model. The al-
gorithm leads to the determination of all the unknown
coefficients included in the following representation of the
Z parameters:

nd Ky 2 vy
Z, (k)= —+]kndA tj— Y =
’ JkS d 2y kK2-K?)
(i,j=1,---,N). (1)

In this expression N is the number of the ports, S is the
area of the planar circuit (see Fig. 1(b)), 4 is the thickness
of the dielectric, n=‘/;L—7€ and k= w\/a are the char-
acteristic impedance and the wavenumber, respectively,
A, are real frequency-independent coefficients, and the
quantities k, are the first O resonating wavenumbers of
the circuit when its ports are open. The coefficients V,, are
related to the normalized electric field E? of the gth
resonant mode by

(2)

where s is a coordinate taken along the boundary 35, and
W, denotes both the ith port and its width. The first term
in (1) dominates at very low frequencies and represents the
contribution of the parallel-plate capacitance.

Like the eigenfunction expansion method, our algorithm
also involves the calculation of resonant modes. Their
number, however, is strongly reduced because of the quite
good convergence of the series contained in (1). In order to
appreciate this point (1) should be compared with the
usual Foster-type representation of the Z parameters, ob-
tained by the Green’s function approach [5]:

g

d (@
v =a—W—lfWIE ds

nd nk = V)V
Z,,(k) = s a Mt &)
g=1"¢

It is realized that (1) represents a modification of (3),
obtainable from it by adding and subtracting from the
series its low-frequency approximation (corresponding to
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A, ;) and by retaining in the remaining series the first Q
terms The extraction of d?A, , improves the convergence
of the series, due to the appearance of the factor 1\5 in the
denominator of its terms. Since our algorithm leads to the
direct determination of the coefficients A (i.e., indepen-
dently of their series representation), the number of modes
to be calculated is strongly reduced. In practice it does not
much exceed the number of resonances occurring in the
band of interest (see Section V).

The two basic equations of the theory are derived from
the integral representation of the field in terms of its
boundary value. In setting up these equations the planar
circuit is considered as enclosed inside a two-dimensional
circular or rectangular resonator {2, bounded by a mag-
netic wall too (see Fig. 1(b)). This unusual configuration is
considered in order to represent the field by integrals
involving the Green’s functions of the resonator &, which
can be approximated very well by rational functions of k.
This causes the basic equations to assume a particular
form which makes it possible to deduce (1) and to set up
the algorithm for the calculation of all the coefficients
involved therein. It is noted that this particular form
makes it possible to determine the resonating wavenum-
bers very efficiently by solving a linear eigenvalue prob-
lem, following a procedure similar to that employed by
Conciauro ef al. [13] for the determination of waveguide
modes.

Since it is based on an integral equation approach, our
method shares some of the merits of the contour integral
method (in particular with regard to the relatively small
order of the involved matrices), without the drawback of
requiring a frequency-by-frequency analysis. Furthermore,
in cases where a part of the boundary dS coincides with
dQ (as in the case of Fig. 1(b)), the boundary condition
has to be imposed only on the other part, so that the
number of variables involved in the solution of the equa-
tions and the order of the matrices may be reduced signifi-
cantly.

It is worth noting that a similar algorithm can be devel-
oped for the analysis of planar waveguide circuits, the
main difference being the electrical wall condition on the
lateral bounary. Actually, in that case a physical reasoning
makes it possible to derive the first two terms of (1)
straightforwardly, with a significant simplification [14].

II. Basic EQUATIONS

Let z be the unit vector along the z axis and # = ¢(s) the
tangent unit vector along the boundary 4S5, and let E =
zE(s) denote the electric field thereat. Moreover let
I,1,,---, I, be the currents impressed at the N ports,
which are z-directed and uniformly distributed on sheets
having widths W,. Due to the equivalence theorem, the
field inside the region S, may be considered as generated
by an (unknown) equivalent magnetic current sheet
— tE(s) flowing along dS and by the electric current sheet

N Il
zlgl “W;"u,(S)
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where u,(s) =1 at the ith port and zero elsewhere. Note
that the electric current is zero outside the ports due to the
magnetic-wall condition at the boundary of the planar
circuit.

Since the equivalence theorem establishes that the field
produced by these currents is zero outside the region S, it
is unimportant to consider them as radiating in free space
or inside a cylindrical impedance wall d{}, bounding a
region £ which includes S (Fig. 1(b)). Therefore we are
permitted to assume that the currents act inside an outer
rectangular or circular two-dimensional resonator
bounded by a magnetic wall. One of the advantages of this
assumption can be appreciated at this point: in fact, since
it permits dS and dQ to coincide partially (for particular
shapes of §), the unknown magnetic current can be re-
duced to that flowing in the noncommon portion of the
boundaries (magnetic currents backed by magnetic wall
have no effect). In the following the portion of 35 not
coinciding with ¢ will be denoted by o. It is understood
that o coincides with dS in cases where dS and d{ have
no common parts.

The field generated by the current sheets in the reso-
nator £ is given by

N T
E(r)=— jnk — r.r k)ds
(r)=—Jju El W fmgu( )

+ [gua(r,r k) vE(s) ds’ (4a)
N Il
H(r)=- Z W/Wgzl(r, v, k)ds
=1 I 1
jk o,
+———/Gzz(r,r’,k)-t’E(s’)ds’ (4b)
M Y

where r and r'= r'(s’) are the observation and the source
points, respectively, ¢'=1¢(s") denotes the tangent vector
at the source point, and g;q, 212, €21, G2, are Green’s func-
tions for the resonator §2. These functions may be repre-
sented as eigenfunction expansions, using the eigenfunc-
tions and the eigenvalues of the problems:

V%, + h$,=0  (¢,=0at IQ) (5a)

ad
VA, +hiy,=0 ( :/'" =0at asz) (5b)
v
[lo2d2=1  [1,2d2=1. (50)
Q Q
The expressions for g,;, g1, 841, G, are
, YN, (r) 1
gu(r,r', k) =§ B2 — k2 k20 (6a)
gu(r.r k) =—z2Xv'gy(r,r' k) (6b)
gn(r, v k) =—gu(r,rk) (6¢)
_ 1 (1) 9 (1)
Gyp(r,r' k) =- ‘];EVV/Z YR
m(r)e,(r)
D (6d)
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where

I XV,
e, =——.

m h (7)

m

Formulas (4)—(7) may be deduced in many ways. The
shortest one, probably, consists in determining them by
duality from the general representation of fields in cylin-
drical regions, bounded by electric walls [15, sec. 13.2].
This derivation is straightforward, as it needs only to
particularize the general formulas given in [15] to time-
harmonic and z-independent sources. When { is circular
or rectangular v, ¢,,, 1,,, 1, are known, and their expres-
sions can be found in many textbooks [e.g. 16]. It is worth
noting that the last term in (6a) corresponds to the zero
frequency eigenvalue occurring in the Neumann’s problem
(5b) (o =0, 4 =271).

As stated by the equivalence theorem, E and H differ
from zero inside S and are zero outside. Therefore the
fields at the boundary of the planar circuit must be de-
duced from (4a) and (4b) as limits for r tending to the
boundary from the inside of S§. For this reason the
boundary condition on the magnetic field is

NI
t- im H(r) =— ; Wlul(s) (res,vreo). (8)

rorn

It is stressed that the discontinuities in surface Green’s
integrals depend on the singularities of the Green’s func-
tions when R =|r—#|— 0. Therefore, if series (6) are
truncated, one obtains poor approximations of E and H
near o, since the truncation destroys the singularities. On
the other hand, (8) plays a fundamental role in setting up
our algorithm, so that a good approximation of the field at
o is very important. For this reason it is mandatory to
modify (6), extracting the singular terms from the Green’s
functions and expressing them is closed form. The extrac-
tion requires rewriting the fundamental functions g,; and

G,, as follows:

1
gn(r,r',k)=—-kz—9+g{)1(r,r')

£ () ¥n(P)
R T E
Guslr, 7. K) = = 259 g (r. )+ G,
en(r)en(r)
R B
where
=gt el) 28
Gy=x o) (10)
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TABLE 1

211, g%, AND G2, FOR A TWO-DIMENSIONAL RESONATOR OF
CIrcuLAR CROSS SECTION

2 2 2 .
Lo 2{r+r%) -3a 1 R(rR/a)
g:1(r,¢,r,¢)= AL L )2 - e—1n ———-——'2
8ra 2n a

observation pomt

2a

0 1 r R|

$.r¢)= —in —
9, (19.1',¢") - " 3R l

: source point
» T 'R (Rerd)c-2m (Per?idad)c-2r £y (d +r? '
Gzoz(r,¢,r',¢')=_ [zcln_a'ﬁl+ A 2 + ( . 2 - (a+r2)(a2+r )“-C‘AS + #T) +
st R (r 'Rl/a) r°r {r R,/a)

~an, 'R 2 2 2 2 5.2 2 2,2 .2
+9Lr. |:-2SIn—'+Sr r +Sr+r 24 _(a rz)(az+r )(LS+AC) .

B R g (rRa) ir
an, 'R 2 2 2 2,2 2 2 2 2
LI [2sma—R'+s' st 2"2 +(a”2)(a2 d )(LS+AC)]+
8n R (r'R /a) r
+ﬁ [2CInLR'— (Ardc-arr . (fP+¢2-2a9(rrfla?-C) ¢ & Ay r? (LC-AS + rr' )
5 LA ) ~
8r aR R (r‘Rlla)z a2 (22 a2
R = \/r2+r'2—2rr'C R, = \/r2+a4/r'2—2ra20/r'
C = cos(¢-¢') S =sin(¢-¢') L=In—2l A=tg'1—2”'—S
a a-mrc
TABLE 11

2%, 2%, AND G3, FOR A TWO-DIMENSIONAL RESONATOR OF
RECTANGULAR CROSS SECTION

observation point
it b el

‘ 0 1
2 2 X X +00 1
° o a  x%+xc 1 Xl+1Xel 4 Pq
94 xyx\y') = 3p + 2ab '—21[ - 4———7! m; 3 p;q;o In Tm (x.y)

Y4
1 source point
b ——
/
1 wy)

1
G lyxy) = - Y, 2 (1P T

4T e Pa=0 | . a _.|

=¥

+o0 1 9 P ~n q
= %R 1 _pa | pjp @Y Eg y PyPep SINY
G2 xyxy) = X (Y s mt? xPE P — ] (AFPXPEF =
(XY X.Y) an = p% [2 m m'Em } w e m-m T::‘q
¢% io ! auppsNY §% f i of 1 Pa_ %P P COSYQ'E:. 1 4 mxx' Ol | 1|
_¥x (MixPE 4 3L (-1 [—InT +X |E ——mF . +2(X - XD
4T .. plao TPl 4 \ T pamo A Y o %
XP = Ex+(1)°x-2am] Y= Eys(1)iy] E - -1%P | TP 2 1-2EPcosY + (EP )
m= p X+ =p Y+ y m = exp(-1X 1) n = cosY + (E7)

Singularities are due b the erm In T;' which diverges like In R X ,¥ = unit vectors
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It can be easily verified that g,; and g, are the Green’s
functions for the scalar wave equation and for the Poisson
equation in two dimensions, respectively. As they exhibit
the same singularity, it is evident that the only singular
term on the r.h.s. in (92) is gJ). Expression (9b) is dis-
cussed in [17], where it is shown that the singularities are
contained in g and G3,. Functions g, g%, and G,
diverge as In R.

The extraction of singularities requires the transforma-
tion of the series (10) so as to evidence the logarithmic
terms. The transformation can be done when € is rectan-
gular or circular, the cases we are interested in. As the
procedure is very cumbersome, for the sake of brevity we
limit ourselves to the results in Tables I and II. We note

that: i) g2, g%, G2 are given in closed form (§ circular)
or in the form of very rapidly converging series (£ rectan-
gular); ii) as a consequence of the extraction of the singu-
lar terms, the series in (9a) and (9b) represent continuous
functions and converge quite rapidly [17], {18], so that they
can be truncated without worries; and iii) after truncation
expressions (9a) and (9b) become rational functions of k.
This last fact constitutes a further advantage of consider-
ing S as embedded in the outer resonator 2. In fact, using
Green’s functions which are rational functions of k per-
mits the algebraic manipulations, developed in the next
section, that lead to the wide-band expression of the Z
parameters.

In the following the number of terms retained in the
summations in (9a) and (9b) will be denoted by M. As
discussed in Section V, in our application the value of M
is reasonably small since, in order to have a good accuracy,
it is sufficient that 4,, exceeds only slightly the value of k&
at the maximum frequency of interest.

After introducing (9) into (4) we obtain the two basic
equations for this theory. One is obtained imposing condi-
tion (8), the other calculating E(s) from (4a) as the
limiting value of the electric field E(r) when r tends to a
point on 48 from the inside of S. Particular care is
required in the calculation of the limits of the integrals
involving the singular parts of the Green’s functions [19].
The calculation of the limits is reported in Appendix 1.

The two basic equations are

a _
Efuggz(s, s’) E)S,E(s’) ds’ + kzj‘;t-ng(s, s’

M
U'E(s")ds'+ k> ),

m=1

a,,
-hTt e, (s)

—f 12X Vgh(s',s)ds’
W,

h———'”—(:~)~—~fzp (s)ds] (11)
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Fig. 2. A generic zero-mean base function.

for values of s corresponding to points of ¢ and
E(s) = jnk Z

- I[I;VQ fgu(ss)ds
y ) /xpm(s)ds}

— k2 Z h(—_ﬁ
()= fexvgh(s.s)

m=1

E(s

U'E(s")ds'+ Z (12)

for any value of s, where ua(s)=1 over o, u,(s)=0
elsewhere, and

xP(s

k2
am=—hfn_k2 fat-em(s)E(s)ds. (13)
In (11)-(13) the source and the observation points are
indicated by their coordinates s,s’ to put into evidence
that both points are located on the boundary. The dash on
the integral symbol denotes the “principal value.”

IIL

For a given set of currents, (11) permits the determina-
tion of the unknown function E(s) over o. Introducing
this function on the r.h.s. of (12), it is possible to find the
electric field all over dS. Substituting this into

. d
l__—WZfW,E(S)dS

the voltages V,V,,- -,
function of the currents.

Assuming that, in general, o consists of K separated
parts 0., 0,," - -, 6 (see Fig. 1(b)), the unknown function is
expressed as

K P
E(s) = X 0ifi()+ L byfy(s)

DETERMINATION OF THE Z MATRIX

(14)

Vy at the ports are obtained as

(over o) (15)

where f/ and f, are base functions and by, b, are un-
known coefficients. Functions f; are defined as follows:

fi=1 for seog;; ML= (16)

Any of the functions f, has zero mean-value (see Fig. 2)
and its support belongs to only one of the lines o,.

0 elsewhere.
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TABLE III
EXPRESSIONS OF THE ELEMENTS OF THE MATRICES USED IN (17) AND (22)
of 5) o (s)

Cpq IJ Ss 922(8.8) E] ds ds o =

[N w,
Lig = fffp(s)t (_izz(s,s')~ tf(s) dsds’ L = jj t Gg,(ss) s') ds ds’

GO 0 o
, 1 o . us)fols) . )
Qp. =W'-[,[:£,t zxvgﬂ(s,s)fp(s)ds. 2" ] = Qr, = WJ[J[‘ ZXVQHSS)ds = ]ds=

] 6 1
. ° 1 . 0 : , k@ S
- W Il frevglesoneas - 28] - v e sas - B2 Jas- o
'"w, o 2 'w o,

.
Fon = 72 [t eq(s)as Riw = & | ten()ds

m g he, o,

0 S, S s

Sw = | Jt Gstss) tdses = 5,5, - (8N = 2 + =

Op Ok "

I j ) dsds’
fwow
1] = 1,2 N h,k = 1,2 K m,n=1,2,. M p,g =1,2, .,P 5hk= Kronecker symbol
Introducing (15) into (11) and (13), and applying the Explicit expressions of the elements of S§~' are easily

Galerkin’s procedure, the following system of matrix equa-
tions is obtained:

—k’R'a+(C—Kk*L')b— k’Lyb = jnk(Q'— k°R'AF)i
(17a)

k*R"AF)i
(17b)
(17¢)

~ kK*R"a— k*L"b - kSB' = jnk(Q" —

(U-k*D')a—Kk*Ryb— k*RY Y =0

where U is the M X M unit matrix, a = an),

b= (b, bza' -+, bp),
b,=(b{>b£9"'7bll()’ i=(11’12a"
=diag[h7 2 k3%, byt

A=diag[h2/(h2—k?), -, B/ (hY — K2)] (18)
and the elements of the other matrices are defined in Table
III. The subscript T denotes the transpose. Note that all
the matrices listed in Table III are k-independent and that
the elements of § and Q" are related to the areas
S, S5, S5, - -, Sk, defined in Fig. 1(b) (see Appendix II).

From (17b) we obtain

(ala Ay,

'aIN)’

.1’ i
b=—S"'[R'a+L"b]- %S*Q”i + jnkS~'R"AFi.
(19)

found (see Table III and Appendix II).
On substitution of (19) into (17a) and (17c) the follow-
ing matrix equation is obtained:

(4828

([ ]2 ar s o

L0 R

where
D=D'—RyS'R" (21a)
R=R-LyS'R” (21b)
L=L'—Lys™'L" (21c)
H=-Rys™'Q" (21d)
0=0-L1S"'0Q". (21e)

Before discussing the solution of (20), we observe that
substituting (12) into (14) and using (15) and (19), the
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voltage vector v=(V},V,,- - -, Vy) can be represented as

nd

Jk

=

L i ¥ Y24 M
gl+orsTe i

+ jnkd [T +(kFpD - HT)AF}'

i

where I is an N X N matrix having unit elements, and T
is defined in Table III.
To solve (20) we observe that (see appendix IV)

(e is)”

=[f;}.]diag(xr2ik2)[.§.}T (23)

where the quantities «, are the eigenvalues of the problem

52l -
(r=1,2,---,P+M) (24)

and (A, B) denotes the matrix whose columns are the
eigenvectors (a, b), normalized according to (A3). Since
the matrices

(22)

(25)

are positive definite (see Appendix III), the eigenvectors
are teal and the eigenvalues are real positive. Using (23) we
obtain, from (20),

il
{252

On substitution into (22) and after some manipulation
involving formulas (Al) and (A5)-(A9), we obtain the
voltage /current relationship in the form v = Zi, where the
Z matrix is given by the expression

Z—iﬂl-l— ikndA + 'k3-1—7—Vdia
xS Jkn Jk g

)"
(27)
where
A=T+Q,C'Q+HH—-F,H—H,F
V=d(H;— F.)A+dQB.

(28)
(29)
IV. DISCUSSION

The eigenvalue problem (24) is equivalent to the solution
of (20) in the case i = 0. Equation (15), together with (19)
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with i=0, yields a field distribution E()(s) for each
eigenvector (a, b),. These fields represent the eigensolu-
tions of the homogeneous equation obtained from (11)
when the exciting currents are zero. The eigensolutions
occur at some particular values of k, corresponding to the
eigenvalues k,.

It is realized that solving the homogeneous equation
means finding the resonances of the planar circuit when
the ports are terminated by magnetic walls. On the other
hand it is pointed out that the solution of the homoge-
neous equation also yields the resonances occurring in the
outer regions S, S,,- -+, Sg. In fact it could be verified
that, if the determination of the field in these regions were
of interest, the above theory should be applied, with the
only difference of a sign reversal in ¢ and a different
procedure of limit in the representation the boundary
condition (8) (r should tend to o from the outside of S
rather than from the inside). When the currents are zero,
an integrodifferential equation identical to (11) should be
obtained. For this reason eigenvalues k, and eigenvectors
(a, b), correspond to resonances occurring either inside or
outside the region S.

The voltages at the rth resonance are obtained from
(22), putting i=0 and introducing the rth eigenvector.
This yields

vr:d(HT_ T)ar+dQTbr' (30)
These vectors are the columns of the matrix V (see. (29)),
so that the generic element V,, represents the voltage at the
ith port, for the rth resonance. Apart from the approxima-
tions involved in the numerical algorithm, the voltage
vectors corresponding to spurious resonances are zero as
the electric field for such resonances is zero inside S.
Therefore the spurious resonances have no influence in the
calculation of the Z parameters, so that the voltage vectors
and the elements in the diagonal matrix corresponding to
them can be completely disregarded in (27). Actually, for
spurious resonances the numerical algorithm yields non-
zero vectors which, however, are easily detected since they
are characterized by very small elements. After the identi-
fication and elimination of the spurious resonances, the
dimensions of the matrix V are reduced from N X(P + M)
to N X Q, by retaining the Q significant columns only. At
the same time the number of elements in the diagonal
matrix is reduced to Q by retaining the terms containing
the Q significant eigenvalues only. These eigenvalues rep-
resent the resonating wavenumbers of the open-circuited
planar circuit, i.e., the quantities denoted by k, in the
Introduction. The elements of the matrix Z given by (27)
have the form (1) and the coefficients involved in the
summation have the meaning given in the Introduction.

V. NUMERICAL IMPLEMENTATION AND EXAMPLES

The algorithm described in the preceding sections was
implemented in a user-oriented computer program, named
ANAPLAN, whose distinguishing feature is the short com-
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puter time. In the following an outline of the program is
given. Details of the program can be found in [20].

As a first step in the computing procedure, the boundary
dS of the planar circuit is generated interactively through a
graphic module, starting from a rectangular or a circular
shape. The modifications of the starting contour are repre-
sented by polygonals, which constitute the discretization of
the lines o,.

In the implementation of the algorithm we use base
functions consisting of interlaced, piecewise-parabolic
functions, each supported by four adjacent segments of o,
and going to zero, together with their derivative, at the
extremes of its support (see Fig. 2). Different functions,
supported by three segments only, are used in proximity to
the extremes of those lines o, that depart from 9. These
functions are piecewise parabolic too, but they differ from
zero at the extreme coincident with d{. These functions
make it possible to represent E(s) at the extremes of each
line o,, where it might differ from zero. Since parabolic
base functions are used, a small number of them is suffi-
cient for an accurate representation of the field. Actually,
it was observed that very good results are obtained, pro-
vided the length of no segment of the polygonals exceeds a
quarter wavelength at the maximum frequency of interest.
This condition is automatically verified since ANAPLAN
checks the segmentation and subdivides any segments that
are too long. A more dense segmentation is provided close
to the possible edges of the lines g, to allow for the rapid
variation of the field which can occur there.

ANAPLAN automatically finds the number M of terms
retained in the modal series (9) following the rule of thumb
that the highest eigenvalue /4,, must be about two times
larger than the maximum value of & in the band of
interest. We observed experimentally that this rule ensures
a good accuracy in the evaluation of the Green’s functions
throughout the whole frequency band.

The next step is the calculation of all the coefficients of
the matrices defined in Table III. The contributions to the
integrals arising from the singular terms contained in
g2, 8%, G,, are calculated analytically. Contributions to
the integrals coming from the regular parts of the Green’s
functions, as well as the other integrals, are evaluated
numerically.

Once matrices (25) have been calculated, the eigenvec-
tors and eigenvalues of (24) are determined, using standard

library routines. Finally matrices (28) and (29) are-

evaluated and the Z parameters (or the S parameters
derived from them) are calculated using (1).

We report the results of the wide-band analysis of the
planar circuit of Fig. 3. This circuit is a 3-dB hybrid
coupler and has the same dimensions as the one snalyzed
by Okoshi [5, pp. 113-117] using the contour integral
method. Our analysis was performed in the 0 ~10 GHz
band. In this example, the starting contour is the external
circle and the line o is the inner contour. P =20 base
functions were used to represent the field at the inner
contour. The value M =11 was chosen by ANAPLAN.
The obtained results are reported in Fig. 4, which shows
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15.3 mm ——————

Fig. 3. The 3-dB hybrid coupler used in the test example. A more
accurate definition of dimensions is given in [5, fig. 7.7]. Relative
permittivity is €, = 2.35.
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Fig. 4. Magnitudes of the S parameters of the circuit of Fig. 3 calcu-
lated by ANAPLAN. Squares represent experimental data reported in [5].

the squared magnitudes of the four scattering parameters
(continous lines). The CPU time was about 5 s on a Digital
VAX 8500 computer. About 3.5 s was required for the
calculation of all the matrix elements listed in Table III,
and a remaining 1.5 s was required for the solution of the
eigenvalue problem and the calculation of the elements of
the matrices A and V. The results of our analysis are
practically coincident with the ories reported by Okoshi
(differences on the plots are inappreciable). On the same
figures are represented the experimental data reported by
Okoshi {5, fig. 7.10(a)]. Differences are due to the fact that
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Fig. 5. (a) The geometry of the planar circuit enclosed in three different

rectangular resonators. Relative permittivity is €, = 2.35. (b) Magnitude
of S,, computed by ANAPLAN.

losses are ignored in the analyses. It is pointed out that the
quoted CPU time concerns the analysis in the whole 0 ~ 10
GHz band. For the same circuit, Okoshi reports a com-
puter time of 4 s per frequency on a HITAC 8800 com-
puter, and 50 frequency points at least should be consid-
ered for analyzing the circuit in the same band. Though
these CPU times cannot be compared exactly, as they refer
to different machines, they make it possible to appreciate
the speed of our algorithm, since the computing powers of
the two machines are comparable. It is observed that the
computing time required by our algorithm is scarcely af-
fected by the irregularities in the frequency response of the
circuitto be analyzed, whereas in cases of irregular
frequency responses the number of points to be considered
in a frequency-by-frequency analysis should increase
dramatically.

A further example concerns the circuit in Fig. 5(a),
which was analyzed in the band 0 ~10 GHz, considering it
as embedded in three different rectangles (ABCD, EFGD,
HFIL). This example makes it possible to realize the
advantage of having a part of the boundary coinciding
with the external boundary 3. The noncoincident part of
the boundary (o) consists of the lines MNO + PQR in the
first case, of AMNOC+PQR in the second case, and of
the whole boundary in the third case. In the three cases we
had: P=12, M=27;, P=20, M=33; and P=28, M=
37. The increase in M derives from the increase in the size
of {2, which causes an increasing number of resonances of
@ to occur inside the band of interest. The results of the
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analyses, represented in Fig. 5(b), are indistinguishable in
the three cases; this emphasizes that the accuracy of our
method is unaffected by the choice of the outer contour
0. This choice, on the contrary, has a large impact on the
computing time, which in the three cases was 2.3 s, 6.3 s,
and 12:2 s, respectively. Such results show the important
time saving which is obtained in the analysis of shapes
slightly differing from €. On the other hand, the maximum
time of 12.2 s suggests the rapidity of the algorithm in
cases where the circuit and the external resonator have no
common boundary.

APPENDIX [

CALCULATION OF SOME LIMITS OF INTEGRALS
INVOLVING SINGULAR FUNCTIONS
OCCURRING IN THE DERIVATION
OF (11) AND (12)

All the following limits are calculated letting the ob-
servation point r tend to a point #, of 45 (or o) from the
inside of the region S.

The first limit is

L=t lim [vv'gh(r,¢)-t'E(s")ds

ronve

d
=t¢- lim /V —a?ggz(r, FYE(s")ds’

Liandl (1 d+ 1
] ad
=—¢- lim nggz(r, ry—=—E(s')ds’
Fo>pvg as

(n=rn(s)€0)

where the transformation was performed integrating by
parts and observing that o (or its component parts) is
either a closed line or a line with extremes on 0§, where
gY, is zero. As we have g, = —In R /27 + regular function
(see Tables I, II), we obtain

r—r

S RE + regular function.
T

Vg%(r’ r,) = -
Then, denoting by A an infinitesimal element of o

centered at r, = ry(s), we have

IE(s)
P

. r—r'
t- lim f—zds’
ron AZWR

-t fvggz(’bs r')

dE(s")

d/
ds d

where

AN

Calculating the integral over A it is discovered that it is
normal to ¢. Therefore this integral does not contribute to
L,. Extracting v from the last integral and observing that
the logarithmic singularity of gJ, is integrable, we obtain
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the result

fgzz Ty ¥') aE(S)

The second limit 1s

(n=rs) o).

r—n

Z Xvgh(r',r)ds’

As we have g = —In R /27 + regular function (see Tables
I, II), we obtain

’

SRE +regular function.
T

ngl(l", r) =

When r, € W,, we have
r—v

2aR?

L,=t- lim sz ds’ +fthVgu(r ry)ds’
r—-n

1 0 ’ ’
=3 + fmt-z xXvgh(r,n)ds'.

When r, & W, the term 1 /2 is missing and the integral is of
the usual type.
The third limit is

= lim /t 2 X V'gl(r, ¥)E(s") ds’
ronvg
(R=r(s) €95).
The calculation is similar to the previous one. When r, € o
we obtain

E(s)
L,=— ( +ft 2 X v'gh(r, r)E(s") ds'.

When r, & o the term — E/2 is missing and the integral is
of the usual type.
The last limit is

J=t hmszzrr)t’E( s’) ds’

r-onpveg

= ft-égz(ro, r)-t'E(s") ds’

since the integral is continuous across o, due to the weak-
ness of the logarithmic singularity of G).

APPENDIX 11
A. Expression for S,; and (S '),
Using the modal representation of G, we have

Shk /f Z m(s)em(s ‘t'dsds’

v (S)em( )
$9.%

where the integrals are extended to the whole contours
3S,, 3S,, since ¢-e,, = 0 on J§. Using Stokes theorem and

-t'dsds’

Sh m
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observing that v X e,, =zh,,, we obtain

ffZIP (r)¢,,(¢)dS,dsS, =3,,S, ~ S}S,)Sk

due to the completeness relation:

3(r=r) = 5 + T ()4 (0.

The validity of the expression of (S~1'),, given in Table
I11 is verified directly using $§~!=U and the geometrical
relation S=Q—-85,—-5,— -+ = S,.

B. Expression for Qf,

Using the modal expansion of g, (see (10)) the second
integral expression of Q) given in Table III can be rewrit-
ten as

IP r 1P"Il
i f[m g XvZ_L_Q 14
r—=n oy

(rOE W,reo,).
Due to the boundary condition satisfied by i, the integral

over o, is transformed into a line integral over . Then,
using Stokes theorem and observing that

VXV Xy, =V, =hy,
we obtain

@:=—%fm[rlgrg0[§2¢m xbm(r)dsk}

k m

1 ) ) 1 , S
= - ﬁ/:fm[rll—l:r:'o'/&(s(r_r)— 5) dSk}ds—ﬁ-

as r is external to S,.

Moreover, starting from the expression of (S71),, given
in Table III, it is easily verified that the following relation
holds:

(A1)

APPENDIX 111
Positive Definiteness of Matrices (25)

The quadratic form associated to the first matrix is

Za+2

=1 p.q=1

bC,.b

PP97q

Introducing the expression of C,, given in Table III and
using the modal expansion of g¥ (see (10)), after simple
manipulations we obtain

- £ s | £ (5 dal

m|p=17

which is always positive.
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The quadratic form associated to the second matrix is
fo=arDa+apR b+ byRa+ b Lb.
Introducing (21a)—(21c) we obtain
fi=a;D'a+aRyb+aRiD +brRa+bL'b+ b L7b
+ brR"a + b4-L"b + b4.SH
where
b'=—-S"YR"a+L"b).

From the definition of the elements of the matrices
L',L",S,R',R", and considering the modal expansion of
G2, (see (10)) it is shown that

Z h2 R// r

— 2
- thR:npR:nq
hk = thnR;rllhR;r,nk‘
m

On substitution into the last expression of f, after some
manipulations we obtain

Mg P 2
f2= Z T+hm Z ( pmbp+Rgmb};)
m=1 m p=1
+ Y Rh4(R,.b,+RYbL)

m=M+1
which is always positive.

APPENDIX IV
Some Useful Relations

Due to their positive definiteness (see Appendix III),
matrices (25) can be simulataneously diagonalized using
the matrix (A, B) having as columns the eigenvectors of
the problem (24) [21, p. 106]. We have

R —

e i

Equation (A3) specifies the normalization of the eigenvec-
tors. Using these expressions, (23) is verified easily.
Expression (A2) may be rewritten as

(A3)

Ay A+ B CB =diag{ k2«3, - (Ad)

2
7KM+P}

From the same expression it is obtained:

vioel™ [4],. . _, _ 4
{0 C] ‘[‘B‘]dlag{"lzakzz, KM2+P}['B']T

or

R e LI [
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This last expression yields the following useful relations:
Adiag{x %k Jkifap | Ar=U (AS)
KM+P}AT_0 (A6)
Analogously, starting from (A3) we obtain
(DA+ R B)A,=U (DA+ R, B)B.=0

Bdiag {k;%, k5%, -

Postmultiplying the latter of these equations by CB, using
the expression of B;CB deduced from (A4), and introduc-
ing the former, we obtain

(DA + R.B)diag(x2, k%, -, k2%, ) =4. (A7)

Furthermore, in the derivation of (27), the following iden-
tities are used:

h? 1
diag h2 k2)=U+k2d1ag W) (A8)
. 1 s 1
diag —:cf—k = diag ——3— + k= diag #xf(xf—kz) .
(A9)
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