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A New Algorithm for the Wide-Band
Analysis of Arbitrarily Shaped

Planar Circuits

PAOLO ARCIONI, MARCO BRESSAN AND GIUSEPPE CONCIAURO, MEMBER, IEEE

,4Wract —A new afgorithm for the wide-band analysis of the two-dimen-

sional model of a planar circuit is described. The planar circuit is consid-

ered to be enclosed in a regularly shaped (rectangular or circular) reso-

nator, and the electric and magnetic ~lelds are derived from the Green’s

functions of this resonator by integrating over the periphery of the circuit

not coinciding with the regular shape. The special form used for the

Green’s fuuctions makes it possible to derive the Z parameters in a special

form, similar to Foster’s series, but converging much more rapidly. The

calculation requires the determination of a reduced number of resonances

of the planar circuit, which are obtained by an integral equation approach

leading to a linear eigenvalue problem. The afgorithm was implemented in

an efficient CAD routine, named ANAPLAN, which is briefly described.

I. INTRODUCTION

I N COMPARISON with usual line elements, strip and

microstrip planar elements allow a greater flexibility in

MIC and MMIC design. The possibility of considering a

virtually infinite variety of shapes may lead to interesting

solutions in the design of many circuit components, such

as directional couplers, filters, and chokes. Since the pub-

lication of the early papers on planar circuits [1]-[4],

interest in this subject has increased continuously. An

extensive bibliography on both methodological and appli-

cative aspects can be found in [5] and in a recent survey

paper by Sorrentino [6].

The design flexibility inherent in planar circuit philoso-

phy can be fully exploited only if CAD tools suitable for

the wide-band analysis and optimization of arbitrary shapes

are available. Fast algorithms for analysis are of paramount

importance, as trial-and-error optimum design techniques

require a significant number of sequential analyses.

A simple model used in the analysis of planar circuits

assumes that the circuit is laterally bounded by a magnetic

wall, except at the ports (Fig. l(a)). Since in this model the

(z-directed) electric field and the (transversal) magnetic
field are z-independent, the field analysis is two-dimen-

sional and it is much simpler than the three-dimensional

one which would be required for taking into account

fringing field and radiation effects rigorously. The use of
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Fig. 1. (a) Two-dimensional model of a planar circuit. (b) Planar circuit
enclosed inside a rectangular resonator Q. In this example Q = ,S + ,$
+S2+S3; U= U,+ U2+U3.

this model is well established in the analysis of strip

(triplate) planar circuits, where the fringing field effects are

taken into account by a slight enlargement of the transver-

sal circuit dimensions [5]. The same model was used for

the analysis of microstrip planar resonators [7], [8] and

circuits [9], [10]. In these last cases the fringing field effect

was taken into account by considering an enlarged circuit

pattern and an effective permittivity. Though the two-

dimensional model is less accurate in microstrip than in

triplate circuit analysis, it is, however, a useful starting
point in the design of such circuits.

Thus far, three kinds of methods have been proposed for

the analysis of planar elements of arbitrary shapes: i) the

time-domain approach [11]; ii) the contour integral method

[4]; and iii) the eigenfunction expansion method [12]. The
time-domain approach has the advantage of permitting the

analysis of circuits including nonlinear elements, but it

leads to computer times that are prohibitive for CAD

applications. The contour integral method is very efficient

for single-frequency calculations, but it may require a very
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long frequency-by-frequency analysis when used in wide-

band design.

In principle the eigenfunction expansion method is well

suited for wide-band analyses, as it supplies directly the

poles and the residues necessary to determine the Y

parameters on the basis of their Foster representation.

This method requires the determination of the resonating

modes of the circuit when the ports are shorted, since each

pair of poles is given by the resonating frequency of a

mode and the pertinent residues depend on the modal

field. Due to the relatively slow convergence of the Foster

series, in order to achieve a good accuracy in a wide band,

the number of modes to be considered must be much

larger than the number of modes occurring in the band of

interest. This is a serious drawback, because the modes

must be determined numerically using, for example, the

finite element technique. For this reason, even though this

method is the most suitable for wide-band analyses, its

practical use requires a very long computer time.

In this paper we present a new algorithm, well suited for

wide-band analyses of planar circuits of arbitrary shapes,

represented by their two-dimensional model. The al-

gorithm leads to the determination of all the unknown

coefficients included in the following representation of the

Z parameters:

(i, j=l,””, N). (1)

In this expression iv is the number of the ports, S is the

area of the planar circuit (see Fig. l(b)), d is the thickness

of the dielectric, q = @ and k = tifi are the char-

acteristic impedance and the wavenumber, respectively,

A,, are real frequency-independent coefficients, and the

quantities kg are the first Q resonating wavenumbers of

the circuit when its ports are open. The coefficients J(q are

related to the normalized electric field E(9) of the q th

resonant mode by

(2)

where s is a coordinate taken along the boundary 8S, and

~ denotes both the ith port and its width. The first term

in (1) dominates at very low frequencies and represents the

contribution of the parallel-plate capacitance.

Like the eigenfunction expansion method, our algorithm

also involves the calculation of resonant modes. Their

number, however, is strongly reduced because of the quite

good convergence of the series contained in (l). In order to

appreciate this point (1) should be compared with the

usual Foster-type representation of the Z parameters, ob-

tained by the Green’s function approach [5]:

It is realized that (1) represents a modification of (3),

obtainable from it by adding and subtracting from the

series its low-frequency approximation (corresponding to

d2A,j) and by retaining in the remaining series the first Q

terms. The extraction of d 2A ,J improves the convergence

of the series, due to the appearance of the factor k: in the

denominator of its terms. Since our algorithm leads to the

direct determination of the coefficients A,J (i.e., indepen-

dently of their series representation), the number of modes

to be calculated is strongly reduced. In practice it does not

much exceed the number of resonances occurring in the

band of interest (see Section V).

The two basic equations of the theory are derived from

the integral representation of the field in terms of its

boundary value. In setting up these equations the planar

circuit is considered as enclosed inside a two-dimensional

circular or rectangular resonator Q, bounded by a mag-

netic wall too (see Fig. l(b)). This unusual configuration is

considered in order to represenl the field by integrals

involving the Green’s functions of the resonator L?, which

can be approximated very well by rational functions of k.

This causes the basic equations to assume a particular

form which makes it possible to cleduce (1) and to set up

the algorithm for the calculation of all the coefficients

involved therein. It is noted th,~t this particular form

makes it possible to determine the resonating wavenum-

bers very efficiently by solving a linear eigenvalue prob-

lem, following a procedure similar to that employed by

Conciauro et al. [13] for the determination of waveguide

modes.

Since it is based on an integral equation approach, our

method shares some of the merits of the contour integral

method (in particular. with regarcl to the relatively small

order of the involved matrices), without the drawback of

requiring a frequency-by-frequency analysis. Furthermore,

in cases where a part of the boundary 8S coincides with

8 ~ (as in the case of Fig. l(b)), the boundary condition

has to be imposed only on the other part, so that the

number of variables involved in the solution of the equa-

tions and the order of the matrices maybe reduced signifi-

cantly.

It is worth noting that a similar algorithm can be devel-

oped for the analysis of planar waveguide circuits, the

main difference being the electrical wall condition on the

lateral bounary. Actually, in that case a physical reasoning

makes it possible to derive the first two terms of (1)

straightforwardly, with a significant simplification [14].

II. BASIC EQUATIONS

Let z be the unit vector along the z axis and t = t(s ) the

tangent unit vector along the boundary 8S, and let E =

ZE(S ) denote the electric field thereat. Moreover let

11,12,. . . , IN be the currents impressed at the N ports,

which are z-directed and uniformly distributed on sheets

having widths ~.. Due to the equivalence theorem, the
field, inside the region S, may be considered as generated

by an (unknown) equivalent magnetic current sheet
— tE(s ) flowing along 8S and by the electric current sheet

EI, ,.
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where u,(s) = 1 at the i th port and zero elsewhere. Note

that the electric current is zero outside the ports due to the

magnetic-wall condition at the boundary of the planar

circuit.

Since the equivalence theorem establishes that the field

produced by these currents is zero outside the region S, it

is unimportant to consider them as radiating in free space

or inside a cylindrical impedance wall 6’Q, bounding a

region !2 which includes S (Fig. l(b)). Therefore we are

permitted to assume that the currents act inside an outer

rectangular or circular two-dimensional resonator fil

bounded by a magnetic wall. One of the advantages of this

assumption can be appreciated at this point: in fact, since

it permits 6’S and d 0 to coincide partially (for particular

shapes of S), the unknown magnetic current can be re-

duced to that flowing in the noncommon portion of the

boundaries (magnetic currents backed by magnetic wall

have no effect). In the following the portion of 8S not

coinciding with d O will be denoted by u. It is understood

that u coincides with dS in cases where dS and d !il have

no common parts.

The field generated by the current sheets in the reso-

nator O is given by

J+ g12(r,r’,k)”t’E(s’)ds’ (4a)
o

N I,
H(r) = – ~ —J gzl(r, r’, k)ds’

,=1 y ~

+J3J~z2(r, r’, k). t’E(s’)ds’ (4b)
~.

where r and r’= r’(s’) are the observation and the source

points, respectively, t‘ = t ‘(s’) denotes the tangent vector

at the source point, and gll, g12, g21, ~zz are Green’s func-
tions for the resonator 0. These functions may be repre-

sented as eigenfunction expansions, using the eigenfunc-

tions and the eigenvalues of the problems:

V2@~+h~@.=0 (@~= Oat dfl) (5a)

(5C)

—
The expressions for gll, g12, gzl, G22 are

*m(r) *m(r’) 1
gll(r, r’, k) = Z hi–k’ – kz~ (6a)

m

glz(r, r’, k) = –z Xv’gll(r, r’, k) (6b)

g21(r, r’, k) = –g12(r’, r,k) (6c)

(6d)

where

z Xv+m
e =—m

hm
(7)

Formulas (4)-(7) may be deduced in many ways. The

shortest one, probably, consists in determining them by

duality from the general representation of fields in cylin-

drical regions, bounded by electric walls [15, sec. 13.2].

This derivation is straightforward, as it needs only to

particularize the general formulas given in [15] to time-

harmonic and z-independent sources. When $2 is circular

or rectangular ~,., GM, h ~, h ~ are known, and their expres-

sions can be found in many textbooks [e.g. 16]. It is worth

noting that the last term in (6a) corresponds to the zero

frequency eigenvalue occurring in the Neumann’s problem

(5b) (h. = O, $.= 0-1/2).

As stated by the equivalence theorem, E and H differ

from zero inside S and are zero outside. Therefore the

fields at the boundary of the planar circuit must be de-

duced from (4a) and (4b) as limits for r tending to the

boundary from the inside of S. For this reason the

boundary condition on the magnetic field is

It is stressed that the discontinuities in surface Green’s

integrals depend on the singularities of the Green’s func-

tions when R = Ir – r’1 -0. Therefore, if series (6) are

truncated, one obtains poor approximations of E and H

near u, since the truncation destroys the singularities. On

the other hand, (8) plays a fundamental role in setting up

our algorithm, so that a good approximation of the field at

u is very important. For this reason it is mandatory to

modify (6), extracting the singular terms from the Green’s

functions and expressing them is closed form. The extrac-

tion requires rewriting the fundamental functions gll and

G22 as follows:

1

gll(r, r’, k) = – —k2L?
+ gfl(r, r’)

+m(r)+bm(r’)
+k’~ ‘

m h~(h:– k’)

~22(r, r’, k) = –Avv’g&(r, r’)+ @2(r, r’)
k’

where

(9a)

(9b)

(lo)
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TABLE I

gfl , ~iz , AND @ FoR A Two-D1~NsloNAL ~soNAToR oF
CIRCULAR CROSS SECTION

1429

T
observation point

2(r2+r’ 2, -3a2 R (r’ RI/a)

9~1 ( r 0, r’,$’ ) = - &ln

GI

—

i?

8xa2
2

a (r, $)

2a 4
~,

g~z(r,$, r’, $) = &in $

1

(r’,$’) ;,

source point
—

. . .

[

“R, (?+t’’)c- 2rr’
GJ. (r, $,r’,O’)=& 2Cln~+

+ (?+r’2+4a2)C-2rr’ (;+?) (f’+r”) ~LCAS + rr’

R2 (r “R, la)’
22

r r’ 1

—T) +
(r’ R,/a)

[

+~ .
2sh L!J+s_+s_.

8X
1

‘a’- r’:(a:+ r”) (LS+ AC) +

R (r’~la)’ rf

+~

[

r ‘R 2 ,2

2Sln~+S~-S

1

r2+r’2-2f +(i+r2)(i-r’2)(L~ +Ac) +

877 R (r’R, /a)
2 ,2

rr

6?

[

*Cln~- (?+r’2)C-2rt (r’+~z. 2a2)(r//a2-C) -Q - f~-t)(;-r’z) ~Lc. AS + -.$-)
+—

8rc aR ~+
(r’ R{a)z az 2 ,2

rr 1
.= J777c R, = r2+a4/r’2-2ra2C/r’

c = Cos(l$-$1’) S = sin($-t$’) L=ln~
rr” S

A . tg-’ —

a a2-rr’C

TABLE II

g~l > g;z , AND @2 FoR A Two-DI~NsIoNAL ~soNAToR oF
RECTANGULAR CROSS SECTION

.=..,=O ~p~so.r:,

X’+X,2 1X:1+1X:1 I ‘-
1;, (X!y>x ‘,y’) = & + — —

2ab 2n
-=~ ~ lnT~q

3;2 (XYX’!Y’ ) = - + ~ ~ (., )P+Q ,n ~fl

m=-m P,q=o

I------a+x

~;z(x,y,x’,y’) = ‘: ~ ~ (-l)q[ ; lnT:- IX:IE :

m.-m P.q+

‘s:;’: ]-: ~ ~(-,)pxp’p=!
~,’ +

nl ---
m

p,q=o m m ~

(

-~ ~ ~ (-l)qX~Ej@+~ ~ ~ (-lf’[~lnT~+lX~l E~cOsyq-E: ]-~.F2(k~\-1~1)

m.-m P.q=o T: 4X m=-- P,q=o
T:

)

X:= f[x+(-l)px’-2am] Yq = g [y+(-l)qy’] E: = exp(-l X~l) Pq
Tm = 1 -2 E:; cos~ + (E:)z

Singularizes are due b the &rm In T; which diverges like In R ; , f = unit vectors
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It can be easily verified that gll and g~l are the Green’s

functions for the scalar wave equation and for the Poisson

equation in two dimensions, respectively. As they exhibit

the same singularity, it is evident that the only singular

term on the r.h.s. in (9a) is g~l. Expression (9b) is dis-

cussed in [17], where it is shown that the singularities are

contained in g~z and ~~z. Functions g~l, g~2, and ~~z

diverge as in R.

The extraction of singularities requires the transforma-

tion of the series (10) so as to evidence the logarithmic

terms. The transformation can be done when O is rectan-

gular or circular, the cases we are interested in. As the

procedure is very cumbersome, for the sake of brevity we

limit ourselves to the results in Tables I and II. We note

that: i) g&, g~2,“~~z” are given in closed form (0 circular)

or in the form of very rapidly converging series (O rectan-

gular); ii) as a consequence of the extraction of the singu-

lar terms, the series in (9a) and (9b) represent continuous

functions and converge quite rapidly [17], [18], so that they

can be truncated without worries; and iii) after truncation

expressions (9a) and (9b) become rational functions of k.

This last fact constitutes a further advantage of consider-

ing S as embedded in the outer resonator 0. In fact, using

Green’s functions which are rational functions of k per-

mits the algebraic manipulations, developed in the next

section, that lead to the wide-band expression of the Z

parameters.

In the following the number of terms retained in the

summations in (9a) and (9b) will be denoted by M. As

discussed in Section V, in our application the value of M

is reasonably small since, in order to have a good accuracy,

it is sufficient that ii ~ exceeds only slightly the value of k

at the maximum frequency of interest.

After introducing (9) into (4) we obtain the two basic

equations for this theory. One is obtained imposing condi-

tion (8), the other calculating E(s) from (4a) as the

limiting value of the electric field E(r) when r tends to a

point on dS from the inside of S. Particular care is

required in the calculation of the limits of the integrals

involving the singular parts of the Green’s functions [19].

The calculation of the limits is reported in Appendix I.

The two basic equations are

:&T:2(.>.9;~(S’) (f S’+ k2~t@2(s,s’)
u

.t’E(s’)ds’+k2 ~ 5t-@~(S)
n,=l h;

ten(s)
+k2f J w)d.’] (11)

m=l hm(h; –k2) ~

Fig. 2. A generic zero-mean base function.

for values of .s corresponding to points of o and

[J~E(s) =jqk:3 —– ~g;l(s, s’)ds’
,=1 ~ k2L? ,

‘m(s) / +)n(s’)ds’–k2; ~ z
~=1 h;(hm–k2) ~

E(s)
+ ~ua($)–fz Xv’g:l(s, s’)

a

.t’E(s’) ds’+ ; ;+~(S)
WL=l m

(12)

for any value of s, where Uo(s) =1 over o, Uo(s) = O

elsewhere, and

am = //j2jte&)E(s)ds-
m u

(13)

In (11)–(13) the source and the observation points are

indicated by their coordinates s, s’ to put into evidence

that both points are located on the boundary. The dash on

the integral symbol denotes the “principal value.”

III. DETERMINATION OF THE Z MATRIX

For a given set of currents, (11) permits the determina-

tion of the unknown function E(s) over u. Introducing

this function on the r.h.s. of (12), it is possible to find the

electric field all over 8S. Substituting this into

(14)

the voltages P’l, V2,. . . . V~ at the ports are obtained as

function of the currents.
Assuming that, in general, u consists of K separated

parts Ul, 02,. ... UK (see Fig. l(b)), the unknown function is

expressed as

E(s) = ~ b~f~(S)+ ~ bPfP(S) (over 0) (15)
k=l ~=1

where f; and fp are base functions and b;, bp are un-

known coefficients. Functions f{ are defined as follows:

f~=l for s=crk; f;= O elsewhere. (16)

Any of the functions fP has zero mean-value (see Fig. 2)

and its support belongs to only one of the lines ok.
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TABLE III
EXPRESSIONS OF THE ELEMENTS OF THE MATRICES USED IN (17) AND (22)

CW = H-9~J’”) - “d” Fm, = & j ~m(s)ds

00. In, w

L:q = j jf,(s)t ~;,(ss) t f,(s) “$”s L’;q

ISO

= j ~ t~;,(~,s) t fq(S) d$d,
ok o

Qp,
= +,jj

t zxVg;l(s’, s) fP(s)d S,.
u (S) fp(s)
*]”, . Q;, =

+HJ
“$)]ds=t zxVg:l(S’, S)ds’ - ~

w,
‘k “

= ~ j[ ft’zxVg:1(s,S)fP(5)dsr - J$l]ds = & N
t’ ZXV, Q;l(S, +”S, fW]d, = >

Q
‘ W,rsk

w, o

~ ~ f,(s) t em(s) “sR’Pm = 1 R“ =
km

-+ j t C?m(S) ds

Ma hm ok

Shk= jjtC;2(5,5)tdsds =S8 .-hhk Q (S”’)hk = ~ + ;

oh Isk h

T,j = &j j ,;,(s,s-) dsds

‘ ‘wlwJ

I,J = 1,2, ... N h,k = 1 ,2,. ,K m,n = 1 ,2,. ,M p,q=l ,2, .,P ah k = Krcmecker symbol

Introducing (15) into (11) and (13), and applying the Explicit expressions of the elements of S-l are easily

Galerkin’s procedure, the following system of matrix equa- found (see Table III and Appendix II).

tions is obtained: On substitution of (19) into (17a) and (17c) the follow-

–k2R’a+ (C–k2L’)b-k2L~b’= jqk(Q’–k2R’AF)i

(17a)

– k2R”a – k2L”b – k2Sb’= jqk(Q”- k2R’’AF)i

(17b)

(U– k2D’)a – k2R;b – k2R$!b’=0 - (17C)

where U is the M X M unit matrix, a = (al, a2, ” “ “, a~)j

b = (bl, b2,. “ “, bP), ,.

b’=(b;, b;,. ... b~), i = (11, 12,..., ~N)> ‘

D’=diag[h;2, h;2,. . .,~;2]

A=diag[h~/(h~ -k2), ” ““,~L/(~L-k2)] (18)

and the elements of the other matrices are defined in Table

III. The subscript T denotes the transpose. Note that ‘all

the matrices listed in Table III are k-independent and that

the elements of S and Q“ are related to the areas
s, Sl, S2, ..0 , SK, defined in Fig. l(b) (see Appendix II).

From (17b) we obtain

ing matrix equation is obtained:

‘jqk([;l-k2[~i::lAF’20)

)

b)= – S-l[RI~a + Lffb] _ ~s-lQtfi + jvkfJIRffAFi.

Before discussing the solution of (20), we observe that
(19) substituting (12) into (14) and using (15) and (19), the
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voltage vector v = (Vl, V2, ” . “, V~) can be represented as

[ 1+ jqkd T+(k2F#-H~)AF i

‘d[HQFIT[d (22)

where I is an N x N matrix having unit elements, and T

is defined in Table III.

To solve (20) we observe that (see appendix 1~~

‘[;ldia+A)[;”lT’23)
where the quantities K, are the eigenvalues of the problem

(r=l,2,..., P + M) (24)

and (A, B) denotes the matrix whose columns are the

eigenvectors (a, b), normalized according to (A3). Since

the matrices

(25)

are positive definite (see Appendix III), the eigenvectors

are real and the eigenvalues are real positive. Using (23) we

obtain, from (20),

[;]=[;]diag(+)

([

H“
.jqk . . .

Q.

A 1“i”‘T
[–kz‘;.D;

R, 1AF i. (26)

On substitution into (22) and after some manipulation

involving formulas (Al) and (A5)–(A9), we obtain the

voltage/current relationship in the form v = Zi, where the

Z matrix is given by the expression

1 qd
Z= ~ —I+ jkqdA + jk3~ Vdiag

]k S (.W%)VT
(27)

where

A= T+ QTC-lQ+HTH– F~H– H~F (28)

V=d(H~– FT)A+dQTB. (29)

IV. DISCUSSION

The eigenvalue problem (24) is equivalent to the solution

of (20) in the case i = O. Equation (15), together with (19)

with i = O, yields a field distribution E (’ J(s ) for each

eigenvector (a, b),. These fields represent the eigensolu-

tions of the homogeneous equation obtained from (11)

when the exciting currents are zero. The eigensolutions

occur at some particular values of k, corresponding to the

eigenvalues K,.

It is realized that solving the homogeneous equation

means finding the resonances of the planar circuit when

the ports are terminated by magnetic walls. On the other

hand it is pointed out that the solution of the homoge-

neous equation also yields the resonances occurring in the

outer regions S1, S2, ” . “, SK. In fact it could be verified

that, if the determination of the field in these regions were

of interest, the above theory should be applied, with the

only difference of a sign reversal in t and a different

procedure of limit in the representation the boundary

condition (8) (r should tend to u from the outside of S

rather than from the inside). When the currents are zero,

an integrodifferential equation identical to (1 1) should be

obtained. For this reason eigenvalues K, and eigenvectors

(a, b), correspond to resonances occurring either inside or

outside the region S.

The voltages at the r th resonance are obtained from

(22), putting i = O and introducing the rth eigenvector.

This yields

v,=d(H~– FT)a, +dQ#,. (30)

These vectors are the columns of the matrix V (see. (29)),

so that the generic element ~, represents the voltage at the

i th port, for the r th resonance. Apart from the approxima-

tions involved in the numerical algorithm, the voltage

vectors corresponding to spurious resonances are zero as

the electric field for such resonances is zero inside S.

Therefore the spurious resonances have no influence in the

calculation of the Z parameters, so that the voltage vectors

and the elements in the diagonal matrix corresponding to

them can be completely disregarded in (27). Actually, for

spurious resonances the numerical algorithm yields non-

zero vectors which, however, are easily detected since they

are characterized by very small elements. After the identi-

fication and elimination of the spurious resonances, the

dimensions of the matrix V are reduced from N x (P + M)

to N x Q, by retaining the Q significant columns only. At

the same time the number of elements in the diagonal

matrix is reduced to Q by retaining the terms containing

the Q significant eigenvalues only. These eigenvalues rep-

resent the resonating wavenumbers of the open-circuited

planar circuit, i.e., the quantities denoted by kq in the

Introduction. The elements of the matrix Z given by (27)

have the form (1) and the coefficients involved in the

summation have the meaning given in the Introduction.

V. NUMERICAL IMPLEMENTATION AND EXAMPLES

The algorithm described in the preceding sections was

implemented in a user-oriented computer program, named

ANAPLAN, whose distinguishing feature is the short com-
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puter time. In the following an outline of the program is

given. Details of the program can be found in [20].

As a first step in the computing procedure, the boundary

dS of the planar circuit is generated interactively through a

graphic module, starting from a rectangular or a circular

shape. The modifications of the starting contour are repre-

sented by polygonal, which constitute the discretization of

the lines u~.

In the implementation of the algorithm we use base

functions consisting of interlaced, piecewise-parabolic

functions, each supported by four adjacent segments of u~

and going to zero, together with their derivative, at the

extremes of its support (see Fig. 2). Different functions,

supported by three segments only, are used in proximity to

the extremes of those lines u~ that depart from d 0. These

functions are piecewise parabolic too, but they differ from

zero at the extreme coincident with 6’Q. These functions

make it possible to represent E(s) at the extremes of each

line cr~, where it might differ from zero. Since parabolic

base functions are used, a small number of them is suffi-

cient for an accurate representation of the field. Actually,

it was observed that very good results are obtained, pro-

vided the length of no segment of the polygonal exceeds a

quarter wavelength at the maximum frequency of interest.

This condition is automatically verified since ANAPLAN

checks the segmentation and subdivides any segments that

are too long. A more dense segmentation is provided close

to the possible edges of the lines u~, to allow for the rapid

variation of the field which can occur there.

ANAPLAN automatically finds the number M of terms

retained in the modal series (9) following the rule of thumb

that the highest eigenvalue h ~ must be about two times

larger than the maximum value of k in the band of

interest. We observed experimental y that this rule ensures

a good accuracy in the evaluation of the Green’s functions

throughout the whole frequency band.

The next step is the calculation of all the coefficients of

the matrices defined in Table III. The contributions to the

integrals arising from the singular terms contained in

g~l, g~z, ~22 are calculated analytically. Contributions to

the integrals coming from the regular parts of the Green’s

functions, as well as the other integrals, are evaluated

numerically.

Once matrices (25) have been calculated, the eigenvec-

tors and eigenvalues of (24) are determined, using standard

library routines. Finally matrices (28) and (29) are

evaluated and the Z parameters (or the S parameters

derived from them) are calculated using (l).

We report the results of the wide-band analysis of the

planar circuit of Fig. 3. This circuit is a 3-dB hybrid

coupler and has the same dimensions as the one snalyzed

by Okoshi [5, pp. 113-117] using the contour integral
method. Our analysis was performed in the O -10 GHz

band. In this example, the starting contour is the external

circle and the line u is the inner contour. P = 20 base

functions were used to represent the field at the inner

contour. The value M =11 was chosen by ANAPLAN.

The obtained results are reported in Fig. 4, which shows

Fig. 3. The 3-dB hybrid coupler used in the test example. A more

accurate definition of dimensions is given in [5, fig. 7.7]. Relative
permittivlty is c,= 2,35.

.5

.4
./=-

01234567 8 9 GHz

0 I I I I i “>~~

01234507 8 9 GHz

Fig. 4. Magnitudes of the ,S parameters of the circuit of Fig. 3 calcu-
lated by ANAPLAN. Squares represent experimental data reported in [5].

the squared magnitudes of the four scattering parameters

(continous lines). The CPU time was about 5 s on a Digital

VAX 8500 computer. About 3.5 s was required for the

calculation of all the matrix elements listed in Table III,

and a remaining 1.5 s was required for the solution of the

eigenvalue problem and the calculiition of the elements of

the matrices A and V. The results of our analysis are

practically coincident with the ones reported by Okoshi

(differences on the plots are inappreciable). On the same

figures are represented the experimental data reported by

Okoshi [5, fig. 7.10(a)]. Differences are due to the fact that



1434 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36. NO, 10, OCTOBER 1988

Is,? I Ckl Aw=uw

-10

-15

-20

(b)

Fig. 5. (a) The geometry of the planar circuit enclosed in three different

rectangular resonators. Relative permittivity is C, = 2.35. (b) Magnitude

of S12 computed by ANAPLAN.

losses are ignored in the analyses. It is pointed out that the

quoted CPU time concerns the analysis in the whole O -10

GHz band. For the same circuit, Okoshi reports a com-

puter time of 4 s per frequency on a HITAC 8800 com-

puter, and 50 frequency points at least should be consid-

ered for analyzing the circuit in the same band. Though

these CPU times cannot be compared exactly, as they refer

to different machines, they make it possible to appreciate

the speed of our algorithm, since the computing powers of

the two machines are comparable. It is observed that the

computing time required by our algorithm is scarcely af-

fected by the irregularities in the frequency response of the

circuitto be analyzed, whereas in cases of irregular

frequency responses the number of points to be considered

in a frequency-by-frequency analysis should increase

dramatically.

A further example concerns the circuit in Fig. 5(a),

which was analyzed in the band O -10 GHz, considering it

as embedded in three different rectangles (ABCD, EFGD,

HFIL). This example makes it possible to realize the

advantage of having a part of the boundary coinciding

with the external boundary d Q. The noncoincident part of

the boundary (u) consists of the lines MNO + PQR in the

first case, of AMNOC + PQR in the second case, and of

the whole boundary in the third case. In the three cases we

had: P=12, M=27; P=20, M=33; and P=28, M=

37. The increase in M derives from the increase in the size

of Q, which causes an increasing number of resonances of

O to occur inside the band of interest. The results of the

analyses, represented in Fig. 5(b), are indistinguishable in

the three cases; this emphasizes that the accuracy of our

method is unaffected by the choice of the outer contour

6’Q. This choice, on the contrary, has a large impact on the

computing time, which in the three cases was 2.3 s, 6.3 s,

and 12:2 s, respectively. Such results show the important

time saving which is obtained in the analysis of shapes

slightly differing from 0. On the other hand, the maximum

time of 12.2 s suggests the rapidity of the algorithm in

cases where the circuit and the external resonator have no

common boundary.

APPENDIX I

CALCULATION OF SOME LIMITS OF INTEGRALS

INVOLVING SINGULAR FUNCTIONS

OCCURRING IN THE DERIVATION

OF (11) AND (12)

All the following limits are calculated letting the ob-

servation point r tend to a point r. of dS (or o) from the

inside of the region S.

The first limit is

/
Ll= t. lim vv’g~z(r, r’). t’E(.s’) ds’

r+ro ~

/

d

=t. lim V ~g~2(r, r’)E(s’) ds’
r+ro ,J

‘-t }:OJ-W:2(V’) ;~(S’) ds’
o

(ro=ro(s)Gcr)

where the transformation was performed integrating by

parts and observing that u (or its component parts) is

either a closed line or a line with extremes on d Q, where

g;z is zero. AS we have g~z = – in R /271 + regular function
(see Tables I, II), we obtain

r—r!

vgj2 ( r, r’) = – ~ + regular function.

Then, denoting by A an infinitesimal element of u

centered at r. = ro(s ), we have

aE(s)

/

r—r{
L1 = —t. lim — ds’

ds .+.O ~2rR2

where

f-j ~—u o—A

Calculating the integral over A it is discovered that it is

normal to t.Therefore this integral does not contribute to

L1. Extracting v from the last integral and observing that

the logarithmic singularity of g~2 is integrable, we obtain
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the result

a
J

aE(s’)
Ll= –~ g:z(~o,~’) —ds’.

o as’

The second limit is

L2=t. lim
/

z X vg:l(r’, r) ds’ (ro=ro(s)=o).
r+ro ~

rl ---- . . . ,— . .

As we have g;l = – In R /2n + regular function (see

I, II), we obtain

~—r~

Vg!l ( r’, r) = ~ + regular function.

l’ables

When rOG ~, we have

J
~—rf

L2=t. lim ZX ~ds’+ f t.z X vg:l(r’, ro) ds’
r-rO A ~

1
—— j+

!
t-z x vgfl(r’, ro) ds’.

~

When r.@ ~ the term 1/2 is missing and the integral is of

the usual type.

The third limit is

JL3 = lim t’.zxv’g~l(r, r’)E(s’) ds’
r-r. ~

(ro=ro(s) G as).

The calculation is similar to the previous one. When r. G u

we obtain

When r.@ u the term – E/2 is missing and the integral is

of the usual type.

The last limit is

f
L4 = t. lim @2(r, r’). t’E(s’) ds’

r+r~ (J

=Jt~:2(rojr’)t’E(s’)ds’
u

since the integral is continuous across o, due to the weak-

ness of the logarithmic singularity of @.

APPENDIX II

A. Expression for Skk and (S - l)kk

Using the modal representation of ~~’ we have

where the integrals are extended to the whole contours

i3S~, 8S~, since t. em = O on 8 !J. Using Stokes theorem and

1435

observing that v X e,n = zh ~IJm we obtain

%=/ J x+m(r)+.(r’)dskdsk= shksk-~
s~ Sk ~

due to the completeness relation:

~(r:r’) =~+~$m(r)$n,(r’).

The validity of the expression of (S- 1)~~ given in Table

HI is verified directly using SS - 1 ==U and the geometrical

relation S=ti-S1- S2-. ..- S8:.

B. Expression for Q~

Using the modal expansion of g}l (see (10)) the second

integral expression of Q; given in Table III can be rewrit-

ten as

Due to the boundary condition satisfied by ~n the integral

over u~ is transformed into a line integral over 8& Then,

using Stokes theorem and observing that

z.v’xv’xz$m =–v’zybm=h;$m

we obtain

as r is external to Sk.

Moreover, starting from the expression of (S- l)kk given

in Table III, it is easily verified that the following relation

holds:

APPENDIX 111

Positive Definiteness of Matrices (2.5)

The quadratic form associated to the first matrix is

M P

Introducing the expression of CP~ given in Table III and

using the modal expansion of g$z (see (10)), after simple
manipulations we obtain

which is always positive.
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The quadratic form associated to the second matrix is

f~=aTDa +QTRTb + bTRa +bTLb.

Introducing (21a) –(21c) we obtain

fz = aTD’a + aTR$b + aTR;b’+ bTR’a + bTL’b + bTL$b’

+ b>R”a + b~L”b + b&Sb’

where

b’= -S-l(R”a + L“b).

From the definition of the elements of the matrices

L‘, L“, S, R’, R“, and considering the modal expansion of

G12 (see (10)) it is shown that

On substitution into the last expression of fz after some

manipulations we obtain

m=M+l

which is always positive.

APPENDIX IV

Some Useful Relations

Due to their positive definiteness (see Appendix III),

matrices (25) can be simulataneously diagonalized using

the matrix (A, B) having as columns the eigenvectors of

the problem (24) [21, p. 106]. We have

[:lT[:::l[:l=diag(K’K’”””>K~+~)‘A2)
(A3)

Equation (A3) specifies the normalization of the eigenvec-

tors. Using these expressions, (23) is verified easily.
Expression (A2) may be rewritten as

ATA +BTCB=diag{K~, K~,. “ “,K~+p } (’4

From the same expression it is obtained:

or

This last expression yields the following useful relations:

Adiag{K1-2, K;2, ” . O, K;ip}AT=U (A5)

Bdiag{K1-2, K~2, ” “ “, ‘fi:p}AT=O
(A6)

Analogously, starting from (A3) we obtain

(DA+ RTB)AT=U (DA+ RTB)BT=O.

Postmultiplying the latter of these equations by CB, using

the expression of BTCB deduced from (A4), and introduc-

ing the former, we obtain

(DA +RTB)diag(K~, K~,. ., Kfi+P) =A. (A7)

Furthermore, in the derivation of (27), the following iden-

tities are used:

(A8)diag(h;:k2)=u+k2diag(h;!k2)

‘iag(+d=diag(+)+k2diag(+
(A9)
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